
One Phase Commit: A Low Overhead Atomic
Commitment Protocol for Scalable Metadata

Services

Giuseppe Congiu
Emerging Technology Group

Xyratex Technology Ltd

Havant, United Kingdom

Giuseppe Congiu@xyratex.com

Matthias Grawinkel
University of Paderborn

Paderborn, Germany

grawinkel@upb.de

Sai Narasimhamurthy
Emerging Technology Group,

Xyratex Technology Ltd

Havant, United Kingdom

Sai Narasimhamurthy@xyratex.com

André Brinkmann
Johannes Gutenberg-University

of Mainz

Mainz, Germany

brinkman@uni-mainz.de

Abstract—As the number of client machines in high end
computing clusters increases, the file system cannot keep up with
the resulting volume of requests, using a centralized metadata
server. This problem will be even more prominent with the advent
of the exascale computing age. In this context, the centralized
metadata server represents a bottleneck for the scaling of the
file system performance as well as a single point of failure. To
overcome this problem, file systems are evolving from centralized
metadata services to distributed metadata services. The metadata
distribution raises a number of additional problems that must be
taken into account. In this paper we will focus on the problem
of managing distributed namespace operations such as CREATE,
DELETE and RENAME. Distributed namespace operations are a
side effect of metadata distribution across the cluster of metadata
servers.

Available protocols for handling distributed namespace oper-
ations such as the two phase commitment protocol are expensive
since they require the exchange of a large number of messages
between metadata servers as well as synchronous writes to stable
storage to log vital information. Moreover, such protocols adopt
locking schemes to protect the resource during the operation,
which force multiple operations on the same directory to be
serialized. This severely impacts the performance of high per-
formance computing applications in typical scenarios such as
high rate of file create operations.

We propose a one phase commit protocol that is tailored to
the use for typical inter-metadata messages. We rely on a fast,
highly available shared storage for metadata in order to minimize
writes, messages, coordination overhead and recovery time in
case of failing metadata servers. We present a formal description
of the new protocol, a theoretical analysis of its capabilities,
a proof of correctness and the evaluation of the protocol in a
simulated environment that renders the protocol to be fast and
reliable. In simulations the protocol achieved more than 50%
better performance compared with the two phase commitment
protocol.

Index Terms—computing clusters; exascale computing; dis-
tributed metadata; distributed namespace;

I. INTRODUCTION

Upcoming exa-scale computing systems will consist of

hundreds of thousands of client machines, which access a

shared, distributed file system. Achieving high performance

in terms of aggregate application bandwidth and I/O response

times is not feasible just by incrementally adding new storage

devices as part of existing architectures.

During the last few years, file system designers have tried

to achieve better performance and scalability by decoupling

the data path from the metadata path and assigning them to

dedicated storage and metadata servers (MDS), and by adding

more storage devices to scale in capacity and I/O throughput.

This has been possible due to the unstructured nature of

data content that enables it to be easily chopped up into stripes

and distributed over the available storage devices. Lustre [1] is

an example of a file system for large computing clusters that

adopts this approach. Nevertheless, as the number of clients

accessing the file system scales, managing all the metadata

operations using only one centralized MDS, as is common

at this time, is very inefficient. The single MDS suddenly

becomes a bottleneck for the whole system performance, with

the number of requests that can be served per unit time being

limited by its capability.

To overcome this problem, a commonly applied solution is

to use a cluster of MDSs rather than a single one [2]–[4].

This allows distributing metadata between available MDSs,

potentially enabling better scalability (by adding more MDSs

when it is required) and availability (if an MDS crashes,

the corresponding metadata responsibility can be redistributed

amongst the remaining servers). However, unlike data, the

scaling of the metadata service is not trivial because the

metadata information has a highly structured nature that

makes its distribution policy over the servers in the cluster

a crucial design issue, which has to be carefully evaluated.

Moreover, metadata server clusters for very large scale file sys-

tems present fundamental performance and reliability issues.

For example, the metadata distribution produces situations

where namespace operations such as CREATE, DELETE and

RENAME of a file may require the activity of multiple MDSs

to be performed in an atomic way.

Distributed namespace operations, also refered to as dis-

tributed transactions or simply transactions hereafter, represent

a serious problem since they can produce file system inconsis-

tencies if one of the involved MDSs fails before the transaction

2012 IEEE International Conference on Cluster Computing Workshops

978-0-7695-4844-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ClusterW.2012.16

16

is completed. To overcome this problem, Atomic Commitment

Protocols (ACPs) are used. This family of protocols guarantees

transaction atomicity and then avoids file system inconsisten-

cies even in the presence of failing servers. Indeed, either all

the operations in the transaction are performed or none of them

is performed at all.

One of the most popular and widely used ACPs is the

Two Phase Commitment protocol (2PC) [5]. At the end of a

distributed transaction, the protocol is started to make all the

updates permanent in stable storage. Even if the 2PC protocol

is widely used in transaction processing, it introduces a big

overhead since it requires the exchange of a large number of

messages between participants in the transaction, as well as

expensive synchronous log writes that can seriously impact

file system performance. For this reason several optimizations

of the protocol, or even completely new solutions, have been

proposed during recent years. These optimizations try to

reduce both the number of messages and the synchronous log

writes the protocol requires to commit a transaction.

In this paper we present a One Phase Commitment protocol

(1PC) designed to reduce the 2PC overhead for all distributed

namespace operations that, in a file system with distributed

metadata service, require the activity of only two MDSs to

be performed. In fact, CREATE and DELETE operations can

involve up to two metadata servers in the cluster, whereas the

RENAME operation can require up to four MDSs. Nevertheless,

the number of RENAME operations in applications for High

End Computing (HEC) clusters is negligible, whereas the

number of CREATE and DELETE can become extremely high.

We developed a 1PC prototype using ACID Sim tools [6],

an OMNET++ framework that provides a set of tools to

write and debug ACPs. Using ACID Sim tools we also prove

the protocol’s effectiveness by comparing it with the 2PC

protocol and two 2PC’s optimizations called Presume Commit

(PrC) [7] and Early Prepare (EP) [8]. We demonstrate that

our protocol can increase the number of distributed create

operations per second by more than 50%. This is achieved by

eliminating the number of extra messages required to commit

the transaction and by reducing the number of synchronous

log writes. The proposed protocol can be particularly useful

for those applications that require creation and/or deletion of

a high number of files per second in the same directory [9]

since it can reduce the number of synchronous log writes

and, therefore, the contention on the directory. Furthermore,

even if it is possible to adopt a metadata distribution strategy

that preserves locality, limiting the number of distributed

transactions, a very large number of concurrent operations in

the same directory, which is a common use case, may turn

the corresponding MDS into a bottleneck. It therefore makes

sense to spread the files within the directory across multiple

MDSs and use the proposed protocol to handle distributed

transactions.

The remainder of this paper is organized as follows. In

section II we describe the problem of managing distributed

namespace operation and available ACP protocols to handle

such operations. Section III describes the protocol we have de-

veloped for both failure-free and failure cases together with the

assumptions we made in order to guarantee recoverability in

case of failure. Section IV analyzes the protocol performance.

Finally Section V and VI present related works on the problem

of handling distributed namespace operations in Distributed

File Systems (DFSs), conclusions and future works.

II. MOTIVATION AND BACKGROUND

The number of clients in HPC clusters has increased con-

stantly during the last years and will further increase in the

future with the advent of the exascale computing age. In

order to efficiently provide data to those clusters, file systems

have evolved from centralized architectures, where all the

data and the metadata were managed by a single server, to

more complex architectures, where both data and metadata are

distributed across many servers. The list of file systems that

follow this approach includes Ceph [2] from the University

of California Santa Cruz, FhGFS [3] from the Fraunhofer

Competence Center for High Performance Computing and

PVFS2 [4], just to mention a few. The Lustre community

with the project Lepus [10] is also working on a distributed

namespace for the Lustre file system.

Clustered metadata server architectures have become pop-

ular since they allow us to overcome the scalability issues

related to having a single point of management for file

system metadata. On the other hand the metadata distribution

introduces a number of new problems. Here we focus on

the problem of managing distributed namespace operations.

Figure 1 depicts a simple example of a distributed namespace

in a cluster of four MDSs. The figure shows that in some

occasions a file and the corresponding parent directory can

be assigned to different servers, e.g., in the case of file1 and

directory dir2.

����

���� ����

���� ���	 ���
���
� ���
�

���
� ���
� ���
	 ���

���
� ���
� ���
�

����

���� ����

����

Fig. 1. Distributed Namespace Example: Every metadata server is responsible
for providing clients with access to a piece of metadata information. Different
dashed boxes in the figure correspond to different collections of metadata
objects such as files and directories.

For this reason in clustered metadata server architec-

tures, namespace operations such as CREATE, DELETE and

RENAME may require the activity of multiple MDSs to be

performed. To delete the file1 in Figure 1, for example, the

17

file system has to perform two different steps: (a) unlink the

file’s inode from the parent directory on MDS1 and (b) update

the inode’s reference counter and optionally delete the inode

on MDS2. The following scenarios may occur when one of

the involved MDSs fails during the execution of those steps:

• MDS2 deletes the file’s inode but MDS1 fails before

unlinking it from the parent directory. In this case the

file has been deleted but the reference is still present in

the parent directory.

• MDS1 unlinks the file from the parent directory but

MDS2 fails before deleting the file’s inode. In this case

the partially completed operation leads to a situation

where the file is still present in the file system but it

is not referenced. Such a file is called an orphaned inode

since it does not have a reference in the parent directory

anymore.

All these cases produce inconsistencies since they violate file

system invariants. The violated invariants for the two previous

scenarios are: (a) if there is a name that references to a file,

then that file exists, and (b) if a file exists, it is referenced at

least once in the namespace.

The managing of distributed namespace operations in DFSs

falls into the problem of transaction processing. A transaction

is an indivisible sequence of computational steps, where every

step can retrieve, modify and store data in the system. In order

to be considered a Transaction Processing System (TPS), a

DFS must satisfy the ACID properties. ACID literally stands

for Atomicity, Consistency, Isolation and Durability. Atom-

icity, also known as all-or-nothing property, guarantees that

all the computational steps in the transaction are performed

completely, or none of them is performed at all; Consistency

guarantees that the local invariants are preserved at every

site; Isolation guarantees that concurrent transactions do not

interfere with each other and, finally, Durability guarantees

that once a transaction has been successfully completed all its

results are durable even in the presence of failure.

To guarantee consistency, every node in the file systems

forces metadata updates to a log in stable storage before

reflecting them in the file system data structures. This mecha-

nism is known as Write-Ahead-Logging and also ensures that

logged updates are durable through system failures. In order

to provide atomicity, DFSs usually adopt ACPs. The most

popular and widely used between those protocols is the 2PC.

A. Two Phase Commit Protocol
There are several versions of the 2PC protocol that have

been proposed and most of them try to reduce the protocol cost

by making speculations about the outcome of the transaction.

In order to make a distinction between all those versions, the

baseline 2PC protocol is also called Presume Nothing (PrN) to

remark the fact that no speculations on the transaction outcome

are made. For this reason we will use the acronyms 2PC and

PrN interchangeably.

Here we describe the protocol considering only transactions

that require the cooperation of two MDSs. Figure 2 depicts

the protocol behavior in the normal case. The 2PC is started

at the end of a transaction in order to safely commit all

the metadata updates to stable storage. The transaction starts

when a client submits a request to an MDS to perform a

distributed namespace operation (such as CREATE, DELETE
or RENAME of a file). In order to keep track of the progress and

handle failure cases, the 2PC also requires the receiving MDS,

called coordinator, to assign an unique ID to the transaction

and to write a STARTED record in the log. Afterwards the

coordinator and the other MDS, called worker, perform their

local updates in the cache, and when both have finished, the

coordinator enters the 2PC protocol to safely commit them to

stable storage. In order to accomplish this task, the protocol

provides the execution of two separate phases:

1) during the first phase, also called voting phase:

• the coordinator asks the worker to prepare to com-

mit by sending it a PREPARE request. Furthermore,

since the coordinator itself performs part of the

updates, it also starts preparing.

• the worker receives the PREPARE request from the

coordinator and starts preparing. To prepare, the

worker forces all the metadata updates from the

cache to the log (Write-Ahead-Logging) and also

writes a prepared record to remember its decision.

2) during the second phase, also called commit phase:

• the coordinator receives the PREPARED message

from the worker, meaning that it has logged its local

updates and is ready to commit. At this point both

the coordinator and the worker have prepared. The

coordinator then writes a COMMITTED record in

the log and sends a COMMIT request to the worker.

• the worker receives the COMMIT request, writes a

COMMITTED record in the log and replies with an

ACKNOWLEDGE message. Afterwards, the log can

be checkpointed and garbage collected.

• the coordinator receives the ACKNOWLEDGE mes-

sage from the worker and finalizes the log writing

an ENDED record. At this point the transaction is

committed and the log can be checkpointed and

garbage collected.

As described above, the two MDSs can commit (as well as

abort) a transaction by sending four messages and forcing

metadata updates and protocol state information to stable

storage during every phase. Thanks to the two separate phases

and the synchronous write of the logs to stable storage, the

2PC protocol provides atomicity property to the transaction.

B. Two Phase Commit Concurrency Control
In order to provide isolation between concurrent transac-

tions, the 2PC adopts a Two Phase Locking (2PL) mechanism.

The 2PL mechanism ensures that the protocol acquires a

lock for every metadata object that will be updated during

the transaction. The locks are acquired at the beginning of

the transaction before starting any update and are released

only after the COMMITTED record has been written in the

log. Furthermore, to avoid dead locks, the coordinator uses a

timeout that allows it to abort the transaction releasing all the

18

Fig. 2. The PrN protocol adds two message round trips and four write delays
to the distributed namespace operation.

previously acquired locks if the worker does not reply to the

UPDATE REQ within the predefined interval of time.

C. Two Phase Commit Failure Handling
To handle failures, the 2PC does not rely on any external

failure detection system. The recovery protocol uses the in-

formation present in the log in order to commit or abort the

transaction. If the coordinator crashes, it enters the recovery

protocol upon restart and checks the log to find out the state

of the transaction at the time the failure happened. The log in

this case can contain the following records:

• STARTED: The failure occured before the coordinator
has been able to prepare. In this case the transaction must

be aborted since all the metadata updates have been lost

in the crash. To abort, the coordinator sends an ABORT
request to the worker and waits for the ACKNOWLEDGE.

• PREPARED: The failure occurred after the coordinator
has prepared. In this case the coordinator resubmits the

PREPARE request to the worker and continues with the

normal protocol execution.

• COMMITTED: The failure occurred after the coordinator
has received the PREPARED message from the worker
but before receiving the ACKNOWLEDGE. The coordina-
tor in this case resends the COMMIT request and continues

with the normal protocol execution.

• ENDED: means that the failure occurred after the coor-
dinator has received the ACKNOWLEDGE message. The

transaction then is already committed and the coordinator
takes no action.

In case the worker crashes, it checks the log upon restart to

find out if there is some pending transaction and its state at the

time the failure happened. The log can contain the following

records:

• PREPARED: The failure occurred before the worker has

been able to receive the transaction outcome from the

coordinator. In this case the worker asks the coordinator
to resend the decision and continues with the normal

protocol execution.

• COMMITTED: The failure occurred after the worker has

received the decision. In this case the worker takes no

action.

• no entry in the log: If the worker receives a

PREPARE request from the coordinator, since no entry

is present in the log, it replies with a NOT-PREPARED
message and takes no action. This happens when the

worker reboots before preparing. On the other hand, if the

worker receives a COMMIT request from the coordinator,

this means that it had committed previously and the

log entry is not present because it has already been

checkpointed and garbage collected. This may happen

if the coordinator does not receive the ACKNOWLEDGE
message because of an unexpected reboot.

Failures not only involve MDSs but may also involve network

components such as links between nodes. If a link fails, for

example, the coordinator will not be able to communicate

with the worker anymore. To avoid the coordinator to block

for an undefined amount of time waiting for the worker’s
reply, the 2PC uses timeouts. If the coordinator does not

receive the PREPARED message from the worker before a

predefined timeout expires, it aborts the transaction. In this

case when the connection is recovered, the worker will be

informed of the abort outcome. The timeout mechanism

also allows the coordinator to abort the transaction if the

worker is too slow responding, thus limiting the duration of

the transaction and reducing the contention on the metadata

objects that can then be made available for other requests.

As described, the 2PC can guarantee ACID properties at the

cost of large overheads introduced in the transaction. To reduce

this cost, several optimizations have been proposed during the

time. Here we discuss the PrC and the EP optimizations since

they will also be used as a comparison metric for the evaluation

of our protocol performance.

D. Presume Commit Optimization
The PrC optimization (Figure 3) saves one message and one

forced log write compared to the PrN. This is accomplished

by eliminating the ACKNOWLEDGE message. The aim of this

message in the PrN is to allow the coordinator to finalize the

log that afterwards can be checkpointed and garbage collected.

Since a failing worker may ask the coordinator about the

outcome of the transaction upon restart, the log should not

be garbage collected until the worker has committed. On the

other hand, the PrC optimization allows the coordinator to

finalize the log after the commit outcome has been decided.

19

In this case if the worker asks for the transaction outcome and

the log is not present at the coordinator site, the worker will

presume that the outcome was a commit. In the abort case the

PrC behaves in the same way as the PrN, meaning that all the

messages and synchronous log writes are restored.

Fig. 3. The PrC optimization eliminates the acknowledge message and allows
the coordinator to return to the client before the worker commits.

Even if the PrC can save one message and one forced log

write, the coordinator still needs two messages for the voting

phase (in order to collect the PREPARED from the worker),

one for the commit phase (to forward the COMMIT) and wait

for three forced log writes to stable storage in order to commit

a transaction.

E. Early Prepare Optimization
A further reduction of the number of messages is provided

by the EP optimization (Figure 4). In the EP protocol the

worker autonomously prepares as soon as the last metadata

update has been completed. This is done by piggybacking the

transaction execution in the voting phase of the PrC protocol.

Compared to this version the presented optimization can save

two more messages. In terms of the number of sent messages

and write delays, the EP protocol outperforms both the PrN

and the PrC versions. Nevertheless, we think that there is

still room for optimizations. Indeed, as already mentioned in

previous sections, the basic assumption for this work is that

namespace operations such as CREATE and DELETE involve

only two MDSs in the cluster; therefore, since the commit

decision can be reached involving the exchange of only one

message between coordinator and worker, we can use one

phase protocols.

III. ONE PHASE COMMIT PROTOCOL

In section II we have introduced the 2PC protocol and

described the ideas behind the PrC and the EP optimizations.

Fig. 4. The Early Prepare optimization piggybacks the prepare message in
the job request, saving two messages.

We have emphasized that the 2PC protocol can guarantee

transaction atomicity by running in two separate phases (voting
phase and commit phase) and by logging state information as

well as metadata updates to stable storage. In this work we

focused on reducing the number of these phases from two to

one, thus minimizing the communication overhead introduced

by the 2PC protocol and the number of forced log writes. This

result can be achieved by cutting off the voting phase and

by piggybacking the transaction execution onto the commit

phase. Indeed, the aim of the voting phase is to collect the

PREPARED messages by the coordinator from all the involved

workers and to allow the coordinator to make a decision

about the transaction outcome. Since we are only interested

in transactions that involve two MDSs, the coordinator in our

protocol does not need to collect any PREPARED messages,

instead it can ask the worker if it can commit and then decide

accordingly.

Based on the described ideas, we have developed a tailored

One Phase Commit (1PC) protocol to handle distributed

transactions using only one phase while still guaranteeing

atomicity. To achieve this, we have designed a completely

new recovery mechanism, which assumes that the coordinator
is able to access the log records of the failing worker. This

assumption is legitimated by the fact that in clustered metadata

server architectures metadata information must be made highly

available in order to allow every MDS in the cluster to access

it. This directly reflects on the architecture of the metadata

servers cluster since it requires all MDSs to keep metadata

as well as their logs in a central repository available to every

other MDS.

A. Central Storage Architecture
In the 1PC protocol we assume that every MDS in the

cluster keeps its log in a centralized storage device reachable

via a Storage Area Network (SAN), for example. Every MDS

maintains its log in a separate partition within the storage

20

device and every partition can be mounted and read by any

MDS in the cluster. This assumption is made in order to

implement a failure recovery mechanism that is able to satisfy

the atomicity requirements of the protocol. The recovery is

started by the coordinator every time it detects a failure of

the worker involved in the transaction or when it reboots after

a crash. The centralized storage architecture in this context

provides a central repository that contains all the information

about every distributed transaction that is running in the

cluster. Such information can be used by the coordinator to

find out the worker’s decision whenever a problem occurs.

This architecture represents the key point that allows the 1PC

to correctly handle all the possible failure cases.

The centralized storage device just described is a shared

resource and for this reason we have to make sure that it will

be accessed in an exclusive fashion by all the MDSs. Indeed,

as already mentioned, every log is written by only one MDS

but can be read by anyone else in the cluster. This means that

we have to guarantee that an MDS that is reading somebody

else’s log will be the only one accessing that log. In this case

the MDS that owns the log must not be able to write it since

it is supposed to have crashed. If not correctly handled, this

scenario might cause file system inconsistency in the presence

of a Byzantine failure. As an example, let us consider the case

of a network partition between the coordinator and the worker.

The failure detection system adopted in computer clusters to

detect failing nodes is usually based on the exchange of heart

beat messages. If a node does not receive heart beats from

another node for a long period of time it declares that node as

crashed. In the case of a network partition, the coordinator
may wrongly detect the worker as crashed and start the

recovery procedure by reading its log while it is still writing

it, potentially producing a wrong transaction outcome (split

brain problem).

Shared resources can be managed using fencing. Fencing

is a mechanism that guarantees exclusive access to shared

resources in a cluster, in this case the shared log on the

shared storage device. There are two different types of fencing,

resource fencing and node fencing. Linux clusters use a node

fencing mechanism known as STONITH [11], literally Shoot
The Other Node In The Head. The STONITH mechanism

allows the alive nodes in the cluster to cut off the power supply

of a node suspected to have failed, thus, forcing it to reboot.

GPFS [12], for example, uses a similar approach to allow a

designated node to recover the log of a crashed node on its

behalf. The GPFS fencing mechanism is called disk leasing.

The resource fencing mechanism uses available resources

to protect the shared storage device. In the case of a device

accessible via a SAN network, the coordinator could isolate

a worker beyond a network partition by instructing the fiber

channel switch to reject all the requests coming from that

specific node. The fiber channel switch in this case behaves

as a barrier between the cluster nodes and the shared storage

device. A further mechanisms for resource fencing is provided

by the SCSI-3 standard through Persistent Reservation [13]

that allows a SCSI drive to maintain a list of initiators that

can access the drive.

Here we assume that the DFS can use one of the described

mechanisms to ensure exclusive access to the shared logs. The

identification of the specific mechanism to adopt is beyond the

scope of this paper.

B. Failure-free Protocol
The protocol behavior in the normal case, where no failures

occur, is reported in Figure 5. The transaction execution in

the 1PC is piggybacked onto the commit phase using the

same approach exploited by the EP optimization previously

described.

The transaction is started when the coordinator receives a

request from the client. The coordinator assigns a unique ID to

the transaction and adds a record to the log to track its progress

and recover in case of failures. This corresponds with the

action of the 2PC coordinator at the beginning of a transaction.

Besides the previously described protocols, in this case the

coordinator also adds a redo record for the requested name

space operation (”CREATE filename”, for example). When the

transaction information has been logged, the MDSs start with

the transaction execution:

• the coordinator performs the first metadata update, sends

an UPDATE REQ to the worker and waits for the

UPDATED message.

• the worker receives the UPDATE REQ from the coordi-
nator, performs the required metadata updates and starts

the commit. To commit, the worker forces all updates

from the cache to the log and writes a COMMITTED
record. Afterwards, the worker replies to the coordinator
with an UPDATED message.

• the coordinator receives the UPDATED message, replies

to the client and starts the commit. To commit, the co-
ordinator writes its metadata updates to the log and also

writes a COMMITTED record. After the commit has been

completed, the coordinator sends an ACKNOWLEDGE
message to the worker in order to allow it to finalize

its log.

• the worker receives the ACKNOWLEDGE message and

finalizes its log writing an ENDED record. At this point

the log can be checkpointed and garbage collected.

The commit of the transaction on the coordinator site starts

asynchronously from the point of view of the client. This is

possible since the coordinator writes a redo record in the log at

the beginning of the transaction. The redo record can be used

by the coordinator during the recovery protocol to re-execute

all the metadata updates.

C. Failure Protocol
As already mentioned the 1PC adopts an aggressive recov-

ery approach. If the coordinator crashes before the commit,

it re-executes the transaction upon restart by accessing the

information present in the redo record in the log. Furthermore,

the coordinator starts the recovery protocol every time it is

not able to get a response from the worker. From the recovery

protocol’s point of view there may, therefore, only be two

failure cases.

21

Fig. 5. One phase commit protocol failure-free behavior.

In the first case the coordinator checks its log upon restart

to retrieve information about not completed transactions. The

log in this case can contain the following records:

• STARTED: The transaction is not committed yet. More-

over, the coordinator does not know the state of the

worker. In this situation the coordinator restarts the trans-

action from the beginning by making its local updates and

re-submitting the UPDATE REQ to the worker. Then it

waits for the UPDATED message.

• COMMITTED: The transaction is already committed and

the coordinator does nothing.

A number of causes can be responsible for the second case.

For example, the coordinator will not be able to get a response

either if the worker has crashed or if a network partition has

occured. Since the coordinator uses heart beat messages and

timeouts to determine whether or not the worker has crashed,

it will not be able to distinguish between the two cases. For

this reason it cannot safely access the worker log to find

out its decision. In this scenario, as previously described, the

coordinator executes a fencing mechanism first to protect the

shared log. For example, it can use the STONITH mechanism

to force the worker to reboot and afterwards safely read its

log. In the worker log it can find the following records:

• COMMITTED: The worker was successful in completing

its updates and committing them. In this case the coor-
dinator can commit.

• no entry in the log: The worker has crashed be-

fore committing its updates to the log. In this case, the

coordinator has to abort.

Finally we analyze what happens on the worker site when

it crashes. If the worker crashes, upon restart it checks its log

to retrieve information about outstanding transactions. The log

can contain the records:

• COMMITTED: The transaction has been committed but

the coordinator may still need to access the log in the

future. In order to finalize the log, the worker asks the

coordinator to resend the ACKNOWLEDGE message.

• ENDED: The coordinator has committed and it does not

need the log anymore. In this case the worker takes no

action.

D. Concurrency Control
To provide isolation between concurrent transactions, the

1PC adopts the same two phase locking mechanism used

in the 2PC protocol. What is different is that the lock at

the coordinator site is released as soon as it receives the

UPDATED message from the worker. In this case, no matter

what will happen, the transaction will be committed eventually.

Therefore, the coordinator can commit its updates to the log

after it has sent the response to the client and released the locks

on metadata objects. To avoid inconsistencies after a reboot,

the coordinator will not execute new requests from any client

until it has completed all the outstanding ones in the same

order it received them before the failure happened.

IV. SIMULATION FRAMEWORK AND RESULTS

In order to compare the performance of the presented

protocols, let us consider Table I. For every protocol the table

reports the total number of synchronous and asynchronous

log writes, the number of synchronous and asynchronous log

writes in the critical path, the total number of messages and

the number of messages in the critical path.

The total number of messages and the messages in the

critical path in Table I list the additional messages required by

the specific protocol when compared with the case where no

atomic commitment protocols are used. For instance, the PrN

protocol requires four additional messages to perform a dis-

tributed namespace operation, whereas the 1PC requires only

one more message (the ACKNOWLEDGE message). Therefore,

the 1PC introduces no additional messages in the critical path.

TABLE I

Total Log Write Log Write in Total Messages
(sync, async) Critical Path Messages in Critical

(sync, async) Path

PrN (5, 1) (4, 1) 4 4

PrC (4, 1) (3, 0) 3 2

EP (4, 1) (3, 0) 1 0

1PC (3, 1) (2, 0) 1 0

Particularly relevant for application performance are the

number of synchronous log writes and the number of messages

in the critical path. These figures describe how long the

coordinator takes before returning to the client with the

transaction result. Moreover, since every metadata object has

to be locked by the protocol just before starting the updates,

they also determine when these locks will be released making

22

the metadata objects available for a new request. Usually the

coordinator releases the locks after the COMMITTED record

has been written in the log, that is concurrent transactions

must not see partial results of each other in order to avoid

unpredictable behaviors. Nevertheless, the 1PC coordinator
can release the locks after the worker commits since at this

time the coordinator is sure that all its local updates will be

eventually committed to stable storage.
In order to evaluate our ideas, we have implemented the

protocol using the ACID Sim Tools simulation framework.

The simulator allows the user to define the architecture of the

transaction processing system by specifying the number and

the connection between a set of basic modules as well as the

parameters for each of them. The basic modules are:

• acp server: Represents the computational node that

executes transactions and runs the ACP protocol. This

module can be connected to others of the same type

to form a cluster of acp servers. Moreover, it is also

connected to a lock manager, a log manager, an

arbitrary number of sources, the statistics and

the leave modules.

• log manager: Represents the stable storage where all

the updates and state records are written. In the case of

the 1PC, this module is connected to every acp server
to implement the shared log architecture.

• lock manager: Manages the locks required by a trans-

action. There is a lock manager connected to every acp
server.

• source: Represents the client that generates the trans-

actions. Every source is connected to one acp server
and to the leave.

• leave: Collects all the completed transactions in the

system. All the aborted transactions can be resubmitted

to the responsible source that reprocesses them.

• statistics: Collects statistics from acp servers.

Every acp server in the simulator can manage a user defined

number of objects. From our point of view, these objects

may be directories and files. For every object the acp server

provides a list of methods that can be used to read or modify

the object itself. These methods can be combined to build up

transactions that are submitted to the acp server by the source

modules. Furthermore, for every object the user can specify

the size that object will occupy in the log as well as the time

consumed by every method of that object. Finally the user can

define the latency of the read and write operations from and

to the log as inverse of the desired disk bandwidth1 and the

network latency for the exchange of messages between acp

servers during a distributed transaction.
To run our tests, we have used the following parameters.

We have considered a computational latency for every object,

both for the read and the write methods, of 1μs, a network

latency of 100μs and a disk bandwith of 400KB/s. Then,

1This does not include separate contributions for seeking and rotational
latencies but only the total latency required to write a block of data. This
value has been chosen considering that shared storage access patterns can be
highly random.

we have measured the number of distributed transactions

per second that the system can sustain, using the previously

described protocols. To do this, we have generated a synthetic

workload where 100 distributed transactions are submitted at

the same time to the same acp server. This workload intends

to reproduce the behavior of HPC applications that create

many files in the same directory. The results are reported in

Figure 6. The best performance of all protocols is achieved

Fig. 6. Distributed Namespace Operations per second.

by the 1PC with 24 distributed transactions per second. PrN

and PrC have nearly the same performance with 15 distributed

transactions per second, while the EP performs slightly better

with 16 distributed transactions per second. In conclusion, the

1PC protocol can gain more than 55% performance, compared

with the PrN, whereas the PrC and the EP can gain only 0.39%
and 6.60%, respectively.

V. RELATED WORK

There is a number of research works on protocols to handle

distributed namespace operations in DFSs. Most of them try

to reduce the cost of the 2PC, minimizing the number of

messages exchanged between MDSs as well as the number

of forced log writes. Fan, Xiong and Ma [14] proposed a

modification of the 2PC protocol for the Dawning Cluster File

System that reduces the number of messages and forced log

writes. The proposed protocol is based on the EP optimiza-

tion of the 2PC protocol described in section II. Aguilera,

Merchant, Shah, Veitch and Karamanolis [15] use the EP

optimization as building block for the Sinfonia data sharing

framework. The idea is to arrange operations in the transaction

so that it is possible to piggyback the last operation execution

onto the 2PC’s voting phase, thus saving a message round-trip

(minitransactions). Sinfonia also introduces a non-blocking

failure recovery protocol for the coordinator. Ceph exploits

metadata locality to reduce the number of distributed trans-

actions and uses the 2PC protocol to guarantee consistency

in the rare event that a distributed transaction occurs. Other

projects try to reduce 2PC overhead by relaxing the ACID

requirements for atomicity. Zhang and Karamanolis proposed

an alternative approach for the DiFFS file system that can

reduce the possible failures to non-severe inconsistencies such

as orphaned inodes by re-ordering operations in the transaction

23

[16]. The ordered operations execution protocol adopts an

aggressive recovery approach that requires the introduction of

additional data structures, such as back pointers, in order to

guarantee exactly one semantic. A similar idea is also adopted

by Devulapalli and Wyckoff [17] who applied it to the PVFS2

file system. Finally Sinnamohideen, Sambasivan, Hendricks,

Liu and Ganger [18] proposed a completely different approach

for the Ursa Minor storage system. Here, all distributed meta-

data operations are reduced to local metadata operations by

moving metadata responsibility from multiple MDSs to only

one MDS that performs all the updates locally. The metadata

migration approach is more heavyweight compared to the

protocols discussed here since all the metadata objects must be

moved between MDSs before they can perform any operation.

Even if the performance penalty can be considered acceptable

for RENAME operations that are very rare in HPC workloads,

it becomes impractical for applications that performe a large

number of CREATE and/or DELETE operations per second

in the same directory, where the namespace is partitioned to

multiple metadata servers.

In this paper we proposed a protocol that is different from

any other protocol discussed in this section. Our protocol

does not require to move metadata objects across MDSs in

the cluster. Instead, we exploit the idea of shared storage

architecture for both metadata and log information. Due to this,

we can reduce the number of phases in the 2PC protocol by

replacing the requirement of the voting phase with a rich and

highly available source of information about every transaction

running in the cluster.

VI. CONCLUSION AND FUTURE WORK

The problem of managing distributed namespace opera-

tions in DFS can become especially serious for those HPC

applications that generate a large number of CREATE or

DELETE operations per second in the same directory. This

is due to the need of guaranteeing the Isolation property that

requires the parent directory to be locked before perform-

ing any operation. Furthermore, the locking of the parent

directory is also required to meet the classical POSIX file

system access semantic that guarantees a consistent view of

the parent directory across multiple clients. The adoption of

ACPs in this context has a negative impact since it introduces

a big communication and log write overhead between the

lock and unlock of the directory. In this paper we focused

on reducing this overhead for a specific class of distributed

namespace operations, which require the cooperation of only

two metadata servers. The simulation results demonstrate that

our protocol provides improvements by more than 55%. We

think that these results are a good indication of how the

protocol can perform in a real system, so the next step will be

the implementation in a real distributed file system. Moreover,

we think that further improvements in terms of the number

of distributed operations per second may be achieved by

aggregating multiple operations together. In this case we do not

intend to change the semantics, instead we think that the MDS

responsible for managing the parent directory can aggregate

multiple namespace operations in only one big transaction,

thus reducing the number of messages and log writes per block

of requests. This is possible since the directory updates are all

performed at the same MDS that can lock the object once and

interleave expensive log writes with many operations in order

to reduce the impact of the protocol on the performance.

ACKNOWLEDGEMENT

This work has been supported by the Marie Curie Initial

Training Networks (MCITN) of the European Commission

(contract no. 238808), and the German Federal Ministry of

Economics and Technology (BMWi) in the Simba project

(grant KF21599005KM1).

REFERENCES

[1] P. J. Braam, “Lustre: a scalable high-performance file system,” White
Paper, November 2002.

[2] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.
of the 7th Conference on Operating Systems Design and Implementation
(OSDI), 2006.

[3] FhGFS. [Online]. Available: http://www.fhgfs.com/cms/
[4] PVFS2. [Online]. Available: http://www.pvfs.org/
[5] J. Gray and L. Lamport, “Consensus on transaction commit,” Microsoft

Research, Tech. Rep., 2004.
[6] A. Mentis, P. Katsaros, and L. Angelis, “ACID Sim Tools: a simulation

framework for distributed transaction processing architectures,” in Proc.
of the 1st ACM International Conference on Simulation tools and
techniques for communications, networks and systems (Simutools), 2008.

[7] B. Lampson and D. Lomet, “A new presumed commit optimization for
two phase commit,” in Proc. of the International Conference on Very
Large Data Bases, 1993.

[8] J. W. Stamos and F. Cristian, “A low-cost atomic commit protocol,”
in Proc. of the 9th IEEE Symposium on Reliable Distributed Systems
(SRDS), 1990.

[9] E. Sminri, R. A. Aydt, A. A. Chien, and D. A. Reed, “I/O requirements
of scientific applications: an evolutionary view,” in Proc. of the 5th IEEE
International Symposium on High Performance Distributed Computing
(HPDC), August 1996, pp. 49–59.

[10] LEPUS. [Online]. Available: http://wiki.whamcloud.com/display/PUB/
Remote+Directories+Solution+Architecture

[11] A. Robertson, “Resource fencing using STONITH,” White Paper, August
2001.

[12] F. Schmuck and R. Haskin, “GPFS: a shared-disk file system for large
computing clusters,” in Proc. of the 1st USENIX Conference on File and
Storage Technologies (FAST), 2007.

[13] SCSI-3 Persistent Reservation. [Online]. Available: http://linux.die.net/
man/8/fence scsi

[14] Z. Fan, J. Xiong, and J. Ma, “A failure recovery mechanism for
distributed metadata servers in DCFS2,” in Proc. of the 7th IEEE
International Conference on High Performance Computing and Grid
in Asia Pacific Region (HPCASIA), 2006.

[15] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis,
“Sinfonia: a new paradigm for building scalable distributed systems,” in
Proc. of the 21st ACM SIGOPS European Workshop (SIGOPS), 2007.

[16] Z. Zhang and C. Karamanolis, “Designing a robust namespace for
distributed file services,” in Proc. of the 20th IEEE Symposium on
Reliable Distributed Systems (SRDS), 2001.

[17] A. Devulapalli and P. Wyckoff, “File creation strategies in a distributed
metadata file system,” in Proc. of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2007.

[18] S. Sinnamohideen, R. R. Sambasivan, J. Hendricks, L. Liu, and G. R.
Ganger, “A transparently-scalable metadata service for the ursa minor
storage system,” in Proc. of the USENIX ’08 Annual Technical Confer-
ence (ATC), 2010.

24

